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(6,3)-MDS CODES OVER AN ALPHABET OF SIZE 4.

T.L. ALDERSON

Abstract. An (n, k)q-MDS code C over an alphabet A (of size q) is a collec-

tion of qk n−tuples over A such that no two words of C agree in as many as

k coordinate positions. It follows that n ≤ q + k − 1. By elementary combi-

natorial means we show that every (6, 3)4-MDS code, linear or not, turns out

to be a linear (6, 3)4-MDS code or else a code equivalent to a linear code with

these parameters. It follows that every (5, 3)4-MDS code over A must also be

equivalent to linear.

1. Introduction

A linear [n, k]-code of minimum distance d satisfies d ≤ n− k + 1–the Singleton

bound [10]. A linear [n, k]-code meeting the Singleton bound is called a linear

Maximum Distance Separable, or MDS code. Analogously, when no assumptions

regarding linearity are made, an (n, k)-MDS code C over an alphabet A of size q

(an (n, k)q-MDS code) is a collection of qk n−tuples over A such that no two words

of C agree in as many as k coordinate positions. It follows that n ≤ q + k − 1

(with equality only if q is even). Such codes, when they exist may or may not be

linear. Linear MDS codes are much studied in the mathematical and engineering

sciences (see [5], [10], or [13]). Under the rubric of MDS codes there are many open

questions. In particular, very little is known in the nonlinear case.

In this short note we are concerned with the structure of an arbitrary (6, 3)4-MDS

code C. If C is in fact known to be linear, the structure of C is easily described as

follows. We choose a basis for C as rows of a 3 × 6 matrix G over GF (4) of rank

3. The MDS condition implies that in fact every set of 3 columns of G are linearly
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2 T.L. ALDERSON

independent. Thus, if we regard the columns of G as points of PG(2, 4), we see

that G is nothing more than an hyperoval in PG(2, 4). Conversely, any hyperoval

in PG(2, 4) gives such a matrix (for more see [9]).

Let us proceed now to the general case. Our main result will be that any (6, 3)4-

MDS code C is either linear or equivalent to linear. Specifically we show C to be a

so called BRS (Bruen-Silverman) code as explained below. In [1], the author showed

that such BRS codes are equivalent to linear–we need only the 3 dimensional case

but the result holds in general. From a result in [2] it follows that every (5, 3)4-MDS

code must also be equivalent to linear. We believe this to be a new result.

There is extensive literature on the structures relating to PG(2, 4) such as the

hexacode, the mathieu designs etc. It is conceivable that our main result could be

deduced by using this kind of machinery although we have not succeeded in doing

so. Nor have we been able to locate a specific reference in the literature. Our main

goal here was to construct a proof both elementary and self contained. It may

transpire that the methods used in this paper are as interesting as the results. This

is because it seems likely the methods can be extended to MDS codes of length

2t + 2 but our investigations are not yet complete.

In [11] R. Silverman discusses these general, not necessarily linear, (n, k)q-MDS

codes. Among the results in [11] are the following.

Lemma 1.1. Let C be an (n, k)q-MDS code over an alphabet A. Fix any k coor-

dinate positions. Then every k−tuple over A will occur exactly once in the fixed

coordinate positions as we range over the words of C.

Lemma 1.2. Let C be an (n, k)q-MDS code with n = q + k − 1 (so the words of C

have maximal length). Then any two words of C having k−2 common entries have

k−1 common entries. In other words, if u and v are words of C and d(u, v) ≤ q+1

then d(u, v) = q.

We use the classical definition of equivalence of codes (see [12]).
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Definition 1.3. Let C be a code of length n over an alphabet A of size q, let π

be a permutation of the symbols in A and let π′ be a permutation on n letters. We

define two types of operations on the words of C.

(1) positional permutation: For each word w = (w1, w2, . . . , wn) of C, apply

the transformation: π′ : w 7→ w′ defined by w′

i = wπ′(i)

(2) symbol permutation: Fix j. For each word w = (w1, w2, . . . , wn) of C,

apply the transformation: π′ : w 7→ w′ defined by w′

i = wi i 6= j, and

w′

j = π(wj)

If a code C ′ can be obtained from a code C by a sequence of positional or symbol

permutations then C ′ and C are said to be equivalent. If C ′ is linear then C is

said to be equivalent to linear.

2. The Incidence Structures S and S ′

An important construct shall be the following incidence structure.

Definition 2.1. Let C be a (q+2, 3)q-MDS code and define the incidence structure

S by:

Points of S: The words of C.

Lines of S: All words in C with fixed entries in two fixed positions.

Planes of S: All words in C with a fixed entry in a fixed position.

By counting it can be easily shown [1] that S satisfies the following:

(1) Each line of S contains q points.

(2) Each plane of S contains q2 points.

(3) The planes of S are divided into q + 2 parallel classes, and each parallel

class partitions the points of C.

(4) Any two planes from distinct parallel classes meet in a unique line.

(5) Any three planes from distinct parallel classes meet in a unique point.

(6) Each plane of S is an affine plane of order q.

We refer to the same objects as both points and words with the context being

apparent. Two words are joined (resp. unjoined) if they have two (resp. no)
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common coordinates. Note that according to Lemma 1.2 any two words of C are

either joined or unjoined.

Lemma 2.2. Given a point P and a line l in S, either P and l are coplanar (so

P is joined to each point of l), or P is joined to exactly q
2 points of l.

Proof. Assume P and l are not coplanar. Let P = (a1, a2, . . . , aq+2) and let l be

the words in C of the form (b1, b2, , , , ) where b1 6= a1 and b2 6= a2 are fixed. For

each i, 3 ≤ i ≤ q + 2, there is a unique word of C with first entry b1, second entry

b2 and i’th entry ai (Lemma 1.1). By Lemma 1.2 these words coincide in pairs, so

exactly q
2 words of l are joined to P . �

Definition 2.3. Denote by Σ1,Σ2, . . . ,Σq the parallel class of planes of S defined

by the first coordinate where Σi consists of all words of the form (i, , , , , ).

Our aim is to give an embedding of S into AG(3, q). To this end we augment S

with new planes, q − 1 through each line of S. We detail the construction:

Definition 2.4 (New Plane). Fix t. Let ` be a line of Σt and choose a point

P not coplanar with `. We define a new plane containing P and ` as follows.

Let Q be one of the q
2 points of ` joined to P . The parallel class [`] in Σt is

determined by the intersection of Σt with each member of a parallel class of planes,

Π1,Π2,Π3, . . . ,Πq, in S. Denote by lij the line Σi ∩ Πj and by [lij ] the parallel

class of lij in Σi, 1 ≤ i, j,≤ q. Exactly q of the lij ’s meet the line PQ (one of which

is `). The points of these q lines form a new plane on P and `.

A natural question is whether these “new planes” are well defined. For general

values of q an affirmative proof seems quite elusive. However, by restricting to an

alphabet of size 4 the task becomes a manageable one.

For the remainder C shall denote a (6, 3)4-MDS code over A = {1, 2, 3, 4}. Let

Π1,Π2,Π3,Π4 be the parallel class of planes based on position two, where each

word of Πi has second entry i. As above, lij = Σi ∩Πj and [lij ] is the parallel class

of lij in Σi. Let P1 ∈ l11 be collinear with P2 ∈ l22 and let Π be the new plane on

P1 and l22 determined via P1P2. By Lemma 2.2, P1 is joined to a second point, P ′

2
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of l22. Let Π′ be the new plane on P1 and l22 determined via the line P1P
′

2 (see

Figure 1). To show the new planes are well defined it suffices to show Π = Π′.

Let P1 = (1, 1, a, b, c, d). P2 and P ′

2 agree in the first two coordinate positions

and hence have no further common entries. As such, we may assume the line P1P2

to consist of all words of the form ( , , a, b, , ) and the line P1P
′

2 to consist of all

words of the form ( , , , , c, d). Let P3 = P1P2 ∩ Σ3 and P ′

3 = P1P
′

2 ∩ Σ3. P3

and P ′

3 have a common first coordinate and (Lemma 2.2) must therefore have a

second entry in common. Agreement in a further position other than the second

would force three common entries with P1, contradicting the MDS property of the

code. Therefore P3P
′

3 ∈ [l33] and so Π ∩ Σ3 = Π′ ∩ Σ3. A similar argument shows

Π∩Σ4 = Π′ ∩Σ4. Therefore Π = Π′ and we conclude that the new planes are well

defined.

Σ1
Σ2

Σ3
Σ4

P ′

4

Π1

l11

l12

l13

l14

P1

P2

P3

P4

l22

l23

l24

l32

l33

l34

l42

l43

l44

P ′

2

P ′

3

Figure 1. Constructing a new plane (the 16 dots).

We claim that no new plane other than Π contains both P1 and l22. Any such

plane contains the line l11. Let Q1 = (1, 1, e, f, g, h) ∈ l11 and let ΠQ be the new

plane determined by Q1 and l22. We will have proved our claim upon showing

ΠQ = Π. To this end, let Q2 ∈ l22 be collinear with Q1 where Q3 and Q4 are

the points of Q1Q2 on Σ3 and Σ4 respectively. We claim the coordinate positions

defining Q1Q2 and those defining P1P2 are either disjoint, and therefore constitute
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positions three through six, or are equal. Suppose by way of contradiction that the

positions overlap and constitute say entries 3, 4, and 5 then all words on P1P2 have

the form ( , , a, b, , ) while those on Q1Q2 have the form ( , , , f, g, ). P1, Q1 ∈ l11

so b 6= f and Q2 6= P2. In C there is a unique word of the form W = ( , , a, f, g, ).

Neither of the first two entries of W are from the set {1, 2} else W is distinct from yet

shares three common entries with one of Q1 or Q2. W has the same third entry as P1

and P2 and so W , P1 and P2 agree in the last coordinate. But then P1 and P2 have

three common entries contradicting P1 6= P2. This proves the claim. Assume with

no loss of generality that any word from P1P2 has the form ( , , a, b, , ) whereas a

word from Q1Q2 has the form ( , , , , g, h). As there is at most one word in C of

the form ( , , a, b, g, h) we may assume (perhaps after applying a suitable symbol

permutation) that Q2 6= P2. In C there are words V1 = (x1, x2, a, b, g, x3) and

V2 = (y1, y2, a, b, y3, h) where {x1, x2, y1, y2} ∩ {1, 2} = {∅} (else one of the Vi’s

has three common entries with and is distinct from one of P1, P2, Q1 or Q2). By

Lemma 1.2, each Vi has two common entries with Q1. This forces x3 = h and

y3 = g and so V1 = V2 = V say. Therefore V ∈ P1P2 ∩ Q1Q2. V lies on Σ3 or

Σ4, so Π and ΠQ intersect each of Σ1, Σ2, and say Σ3 in the same sets. Since

each Πi and each Σi contains a unique point of P1P2 and a unique point of Q1Q2,

Π ∩ Σ4 = ΠQ ∩ Σ4. We conclude that Π = ΠQ and so through P1 and l22 there is

an unique new plane. Combinatorial reasoning then establishes the following.

Lemma 2.5. A “new plane” Π is uniquely determined by one of its lines and one

of its points each lying on distinct Σi’s.

Fix i 6= j. Any given line ` in Σi lies on two planes of S, one of which intersects

Σj in a line, say `′. Through each of the three lines in Σj parallel to but not equal

to `′ we form a new plane containing `. Thus, in the manner above, through every

line of Σi we construct three new planes.

Definition 2.6. Let S ′ be the incidence structure of S together with all new planes

(where as in S, two points are collinear if they lie on two common planes).
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With a view to showing S ′ to be a linear space we establish the following three

lemmas.

Lemma 2.7. If Ψ1 and Ψ2 are distinct planes of S ′, then Ψ1 and Ψ2 are either

disjoint or they intersect in exactly 4 points.

Proof. If Ψ1 and Ψ2 are planes in the old sense (planes of S) then the result is

clear. If Ψ1 is a new plane and Ψ2 an old plane then we have two cases to consider,

either Ψ2 is a Σi or it is not. In the affirmative case, the construction of our new

planes gives |Ψ1 ∩ Ψ2| = 4. If Ψ2 is not one of the Σi’s, then it intersects each Σi

in a line. For i = 1..4 define the lines li and mi by li = Ψ1 ∩Σi and mi = Ψ2 ∩Σi.

We have two subcases to consider:

Case 1: l1 parallel to (or equal to) m1.

In this case [li] = [mi] (in Σi) for each i. By the definition of a new plane,

Ψ1 will contain exactly one of the mi’s. As such we have |Ψ1 ∩ Ψ2| = 4.

Case 2: l1 intersects m1 in a point.

In this case we will have li nonparallel to mi for each i. This then gives

exactly 4 points of intersection (one in each of the Σi’s).

The final situation to consider is when Ψ1 and Ψ2 are both new planes. We have

three subcases to consider:

|l1 ∩ m1| = 1: In this case, since l1 and m1 are not parallel, li will be non-

parallel with mi for each i. So Ψ1 and Ψ2 will have exactly one common

point in each Σi giving |Ψ1 ∩ Ψ2| = 4.

|l1 ∩ m1| = 4: Here, Ψ1 and Ψ2 have a common line in Σ1. If Ψ1 and Ψ2

have a fifth point in common then (Lemma 2.5) they are equal.

|l1 ∩ m1| = 0: l1 and m1 are parallel, so li is parallel to mi for each i. If Ψ1

and Ψ2 share two lines, they coincide. Hence, Ψ1 and Ψ2 share either no

points or exactly one line (4 points).

�

With Lemma 2.7 in hand our definition of a line in S ′, as the intersection of two

planes, is somewhat justified. The following Lemma strengthens our case.
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Lemma 2.8. If a line `′ of S ′ contains two points of a line ` of S then ` = `′.

Proof. Let P and Q be collinear in S. It suffices to show that a new plane Π

containing P and Q contains the line PQ. If P and Q lie in the same Σi then

the result is clear. On the other hand, the line PQ intersects Σ1 in a single point

P ′ 6= Q and Σ2 in the point Q′ 6= P . P ′ lies on the line l = Σ1 ∩ Π. Thus Π must

be the plane determined by l and Q′ and hence contains PQ. �

Lemma 2.9. Let Π be a plane of S ′, and P a point not in Π. There exists a unique

plane through P parallel to Π.

Proof. Assume (perhaps after applying a suitable symbol permutation) P ∈ Σ1. If

Σ1 is parallel to Π then we are done. So assume the contrary. For i = 1, 2, 3, 4

denote by λi the line Σi ∩ Π. Since the Σi’s are disjoint, the λi’s are parallel in Π.

Through P there exists a unique line l parallel (in Σ1) to λ1. Any plane parallel

to Π and containing P must intersect Σ1 in l. There are five planes containing the

line l (one of which is Σ1). According to Lemma 2.7, any plane on l intersecting Π

will do so in exactly one line, moreover this line will be parallel (in Π) to λ1. So

four of the planes on l intersect π nontrivially (in a λi) leaving exactly one plane

on l disjoint from Π. �

Theorem 2.10. The incidence structure S ′ is a linear space.

Proof. Every line of S ′ contains four points. As such, we need only show that

any two points P and Q lie on a unique line. If P and Q are collinear in S then

(Lemma 2.8) no other line contains both points. On the other hand P and Q are

unjoined in S, so P and Q appear in distinct Σi’s. Assume (perhaps after applying

a suitable symbol permutation) P ∈ Σ1 and Q ∈ Σ2. There are 5 new planes, say

Ψ1,Ψ2, . . . ,Ψ5, containing both P and Q (one for each pair of “parallel” lines, one

on P and the other on Q). Let mi = Ψi ∩ Σ3 and ni = Ψi ∩ Σ4. We claim the

mi’s share a common point as do the ni’s. If the mi’s are not incident at a point,

then one of the lines, say m1 contains at least three points of intersection with the

other mi’s. By Lemma 2.2, m1 contains exactly two points collinear in S with P .



9

Thus, one of the points of intersection, say R = m1 ∩ m2 is collinear in S with P .

Both Ψ1 and Ψ2 contain P and R. By Lemma 2.8 the line RP is precisely their

intersection. But both Ψ1 and Ψ2 contain the point Q forcing Q to be contained

in the line RP . This is a contradiction since Q was assumed unjoined to P in S.

A similar argument shows the ni’s to be incident at a point. We conclude that P

and Q are contained in precisely one line. �

3. Main Results

An n-arc (resp. dual n-arc) in PG(k, q) is a set K of n ≥ (k + 1) points (resp.

hyperplanes) such that no k + 1 points (resp. hyperplanes) lie on a common hy-

perplane (resp. point). So in PG(2, q), a dual n-arc is a set of n lines no three

of which are incident at a point. In [8], Bruen and Silverman give a technique for

constructing (n, k)q-MDS codes over GF (q). We define a Bruen-Silverman code as

one that can be constructed using their technique.

Definition 3.1. (BRS-Code) In Σ = PG(n, q) choose a hyperplane H∞. In H∞

choose a dual n-arc K = {λ1, λ2, · · · , λn}. Now, for each subspace λi in K, label the

q hyperplanes in Σ other than H∞ containing λi with 1,2,...,q. Finally, let P be any

of the qk points of Σ−H∞. We define Φ(P ) = (x1, x2, · · · , xn) where xi is the label

of the unique hyperplane of Σ containing both P and λi. Then {Φ(P ) |P ∈ Σ−H∞}

is a (n, k)q-MDS code and is called an (n, k)q-Bruen-Silverman code, or an (n, k)q-

BRS code.

In view of Definitions 1.3 and 3.1, if C is a BRS code and C ′ is equivalent to C,

then C ′ is also a BRS code. In [1] the author showed the following:

Theorem 3.2. C is an (n, 3)q-BRS code if and only if C is equivalent to linear.

We are now in a position to prove our main result.

Theorem 3.3. Every (6, 3)4-MDS code is equivalent to linear.

Proof. We claim the incidence structure S ′ is exactly AG(3, 4). To see this we

demonstrate (see [4] p.86) that each of the following conditions hold in S ′:(1) S ′
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is a linear space. (2) S ′ contains three points not on a line. (3) Every line of S ′

contains at least four points. (4) Every plane of S ′ is an affine plane.

Condition (1) is shown in Theorem 2.10 Conditions (2) and (3) are clear, leaving

only (4) to be shown. To show that a plane Π of S ′ is an affine plane we need to

show that Π has the following properties: (a) Π is a linear space (b) Π contains

three points not on a line (c) Given a line l of Π and a point P not on l, then there

exists a unique line through P parallel to l.

Property (a) is inherited from S ′. Property (b) is clear, leaving (c) to be shown.

Suppose Π ,l, and P are as defined in (c). Let Ψ be a plane other than Π through

l. By Lemma 2.9 there exists a unique plane Ψ′ through P parallel to Ψ. Let

l′ = Ψ′ ∩ Π. Then l and l′ are parallel and (c) is shown. Thus the incidence

structure S ′ is AG(3,4).

The planes of S are precisely the planes of 6 parallel classes in AG(3, q). More-

over, upon embedding S ′ in PG(2, q) by appending a hyperplane Π∞ at infinity,

the planes in a given parallel class of S will share a common line in Π∞. No three of

these lines lie on a point (else three nonparallel planes of S share 4 points), so the

aggregate of these lines form a dual 6-arc (or hyperoval) in Π∞. It follows that C is

of Bruen-Silverman type and by Theorem 3.2 we conclude that every (6, 3)4-MDS

code is equivalent to linear. �

Definition 3.4. An (n, k)q-MDS code C is said to be an extension of an (n−1, k)q-

MDS code C ′ if upon deleting a fixed coordinate position from each word of C, the

code C ′ results.

Theorem 3.5. If C is a (q + k − 2, k)q-MDS code with q even then C may be

extended in a unique way to an (q + k − 1, k)q-MDS code.

Proof. See [2] (or [1] for k = 3). �

If C is an (n, k)q-BRS code then the code C ′ obtained by deleting a fixed coor-

dinate position from each word in C clearly remains a BRS code. Thus, by way of

Theorems 3.3 and 3.5 we get the following corollary.

Corollary 3.6. Every (5, 3)4-MDS code is equivalent to linear.
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